Model-free Music Similarity Measure

نویسندگان

  • Wen Shao
  • Tom Gedeon
چکیده

This thesis first takes a broad look at various music similarity measures in the literature, and then focuses on two different model-free music similarity measures and evaluates them. The term model-free in this context indicates that these music similarity measures use few or no background knowledge about music whatsoever, they are more general compared with other approaches and can, with little or no change, be used in different other or areas as well. The first approach is based on Mel-frequency cepstral coefficient features (MFCCs) and Gaussian Mixture Models (GMMs), which, technically speaking is not utterly model-free in the sense that you at least need to know that you are dealing with some audio-related problems, as the features drawn from pieces of music require this awareness. The second is based on an ideal theory of the information content in individual objects (Kolmogorov complexity), information distance, and a universal similarity metric. The latter approach performs the comparison on Musical Instrument Digital Interface (MIDI) files, which dramatically contrasts with the former one, where a wave format is used. Furthermore, we present a new method based on Neural Network (NN), known, together with fuzzy logic and evolutionary computing, as some biological-inspired methods. Our method is based on the first approach, but uses NN as classifier instead of measuring the distance between two sets of GMMs directly. Finally, we present the experimental results. The first two methods don’t work quite well on the dataset we used in the experiment, and we analyzed the possible reasons. Experiments show that the third method measures reasonably well the degree of music similarity. 1 This concept coincides with entropy in information theory, which can be regarded as the expectation version of Kolmogorov complexity in some sense. MODEL-­‐FREE MUSIC SIMILARITY MEASURE Wen Shao(u4717714) List of Abbreviations NN Neural Networks GMM Gaussian Mixture Model MFCCs Mel-Frequency Cepstrum Coefficients TM Turing Machine EM Expectation Maximization MODEL-­‐FREE MUSIC SIMILARITY MEASURE Wen Shao(u4717714) Table of Contents ABSTRACT ................................................................................................................................................... 1-­‐1 LIST OF ABBREVIATIONS ............................................................................................................................. 1-­‐2 TABLE OF FIGURES ...................................................................................................................................... 1-­‐5 1. INTRODUCTION ................................................................................................................................... 1-­‐6 1.1 PURPOSE ................................................................................................................................................... 1-­‐6 1.2 CONTRIBUTION ........................................................................................................................................... 1-­‐7 1.3 ORGANIZATION .......................................................................................................................................... 1-­‐7 2. RELEVANT TECHNIQUES AND CONCEPTS .............................................................................................. 2-­‐8 2.1 METRIC ..................................................................................................................................................... 2-­‐8 2.2 KOLMOGOROV COMPLEXITY ......................................................................................................................... 2-­‐8 2.2.1 Universal Turing machine and Kolmogorov complexity ................................................................... 2-­‐8 2.2.2 Conditional Kolmogorov complexity .............................................................................................. 2-­‐10 2.2.3 Incomputability of Kolmogorov complexity ................................................................................... 2-­‐10 2.3 GAUSSIAN MIXTURE MODEL ....................................................................................................................... 2-­‐11 2.3.1 The Gaussian distribution .............................................................................................................. 2-­‐11 2.3.2 Mixtures of Gaussians .................................................................................................................... 2-­‐11 2.3.3 Learning mixtures of Gaussians ..................................................................................................... 2-­‐12 2.4 MEL FREQUENCY CEPSTRUM COEFFICIENTS (MFCCS) ..................................................................................... 2-­‐13 2.4.1 Mel Scale ........................................................................................................................................ 2-­‐13 2.4.2 Decibels .......................................................................................................................................... 2-­‐14 3. LITERATURE REVIEW ........................................................................................................................... 3-­‐15 3.1 MIR AND MIREX ..................................................................................................................................... 3-­‐15 3.2 SYMBOLIC REPRESENTATION APPROACHES AND STRING MATCHING TECHNIQUES .................................................. 3-­‐15 3.3 ACOUSTIC REPRESENTATION AND MACHINE LEARNING TECHNIQUES ................................................................... 3-­‐16 4. EVALUATION OF KOLMOGOROV COMPLEXITY-­‐BASED METHOD ......................................................... 4-­‐17 4.1 KOLMOGOROV COMPLEXITY-­‐BASED METHOD ................................................................................................. 4-­‐17 4.2 DATASET AND EXPERIMENT SETUP ............................................................................................................... 4-­‐17 4.3 EXPERIMENTAL RESULTS ............................................................................................................................. 4-­‐18 5. EVALUATION OF MFCCS AND GMM-­‐BASED METHOD .......................................................................... 5-­‐20 5.1 FEATURE EXTRACTION ................................................................................................................................ 5-­‐20 5.1.1 Power Spectrum ............................................................................................................................. 5-­‐20 5.1.2 Mel Frequence ............................................................................................................................... 5-­‐22 5.1.3 Decibel ........................................................................................................................................... 5-­‐23 5.1.4 DCT ................................................................................................................................................. 5-­‐23 5.2 GMM SIGNATURE .................................................................................................................................... 5-­‐24 5.3 SIMILARITY MEASURE ................................................................................................................................ 5-­‐26 5.4 EXPERIMENT SETUP ................................................................................................................................... 5-­‐26 MODEL-­‐FREE MUSIC SIMILARITY MEASURE Wen Shao(u4717714) 5.5 EXPERIMENTAL RESULTS ............................................................................................................................. 5-­‐27 6. A NOVEL APPROACH: NN-­‐BASED SIMILARITY MEASURE ...................................................................... 6-­‐29 6.1 NEURAL NETWORKS (NN) .......................................................................................................................... 6-­‐29 6.1.1 Neural Networks from biological perspective and mathematical perspective .............................. 6-­‐29 6.1.2 Cross-­‐entropy error function for binary classification .................................................................... 6-­‐31 6.1.3 Error backpropagation ................................................................................................................... 6-­‐32 6.1.4 Neural Network structures ............................................................................................................. 6-­‐33 6.2 NN-­‐GMMS-­‐BASED MUSIC SIMILARITY MEASURE ........................................................................................... 6-­‐33 6.3 EXPERIMENT RESULTS ................................................................................................................................ 6-­‐35 7. FUTURE WORK .................................................................................................................................... 7-­‐37 BIBLIOGRAPHY ........................................................................................................................................... 7-­‐38 MODEL-­‐FREE MUSIC SIMILARITY MEASURE Wen Shao(u4717714)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multifaceted Approach to Music Similarity

Previous work has explored the concept of music similarity measures and a variety of methods have been proposed for calculating such measures. This paper describes a system for music similarity which attempts to model and compare some of the more musically salient features of a set of audio signals. A model for timbre and a model for rhythm are implemented directly from previous work, and a mod...

متن کامل

Music Similarity Measures: What’s the Use? Music Similarity Measures: What’s the Use?

Electronic Music Distribution (EMD) is in demand of robust, automatically extracted music descriptors. We introduce a timbral similarity measures for comparing music titles. This measure is based on a Gaussian model of cepstrum coefficients. We describe the timbre extractor and the corresponding timbral similarity relation. We describe experiments in assessing the quality of the similarity rela...

متن کامل

Music Similarity Measures: What's the use?

Electronic Music Distribution (EMD) is in demand of robust, automatically extracted music descriptors. We introduce a timbral similarity measures for comparing music titles. This measure is based on a Gaussian model of cepstrum coefficients. We describe the timbre extractor and the corresponding timbral similarity relation. We describe experiments in assessing the quality of the similarity rela...

متن کامل

Gmm Supervector for Content Based Music Similarity

Timbral modeling is fundamental in content based music similarity systems. It is usually achieved by modeling the short term features by a Gaussian Model (GM) or Gaussian Mixture Models (GMM). In this article we propose to achieve this goal by using the GMM-supervector approach. This method allows to represent complex statistical models by an Euclidean vector. Experiments performed for the musi...

متن کامل

Eyes4Ears - More than a Classical Music Retrieval System

Content-based similarity search for music retrieval attracted a lot attention in recent information retrieval research. Most music applications (e.g. several commercial web portals) offer to search music files, which however is limited to key-word-based search on subjects like genre or artist. Other similarity search approaches base on abstract metrics, which are defined on feature vectors repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010